
PB93-238178 NT1S 
Information is our business. 

THE COMPLEXITY OF RESHAPING ARRAYS ON 
BOOLEAN CUBES 

THINKING MACHINES CORP. 
CAMBRIDGE, MA 

1990 

U.S. DEPARTMENT OF COMMERCE 
National Technical Information Service jXxüC QUALMT lEBJfELTL'mii as 

DISTRIBUTION STATEMENT 

Approved for public release; 
Distribution Unlimited 



REPORT DOCUMENTATION PAGE 
PB93-238178 

Pjnhc reo:" ~z burden *cr cu s :.z' erdon of nforn-ation s ?s* mated to a.erage ' -our oe' "esoorse. .ncudi-g the t.Tie *cr 'ev.e^ing instructions, searching e*:st'ng aara sources. 
gatne'mg anc maintain.ng the data -eeaed, arg completing anc re., le.vrg trecc'.ert'or of information Sendcomments regarding this burden estimate or an, other aspect of this 
coi'ecro.n :' intorrrat'on. nciudmg Suggest ens *:r 'educing tn.s ouraen t: -Vasnmgton Headauarters Sernces, Directorate tor nformat'cn Ooe'ations ana feocrts, 12'5 Jefferson 
Da.s-ro-.-.a,.Suite "2:<:  -'imgtor   . -  222C2-J302 and to the Q*':ce 0* Management and Budget Dape-ACr< Reduction Project (07C4-0,38), /.'ashington, DC 20503 

1.  AGENCY USE ONLY (leave blank) 2. REPORT DATE 
1990 

3   REPORT TYPE   AND DATES COVERED 
Technical 

4. TITLE AND SUBTITLE 

The complexity of reshaping arrays on boolean 
cubes 

6. AUTHOR(S) 

C. Ho, and S.L. Johnsson 

5.  FUNDING NUMBERS 

AFOSR-89-0382 
ONR-N00014-86-K-0310 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Thinking Machines Corp. 
245 First Street 
Cambridge, Ma 02142-1264 

8.  PERFORMING ORGANIZATION 
REPORT NUMBER 

TMC-4 

9. SPONSORING   MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

AFOSR--Dept. of Air FOrce, The Pentagon Washington 
DC 20330 

ONR- - Department of the Navy, The Pentagon Washington DC 

10. SPONSORING ' MONITORING 
AGENCY REPORT NUMBER 

11.  SUr = .:Mi .-TES 

"i   STATEVENT 12b. DISTRIBUTION CODE 

13. ABSTRAF   K'--. -„~20C .::■?;. 

Reshaping of arrays is a convenient programming primitive. For arrays 
encodied in a binary-reflected gray code reshaping implies code change. 
We show that an axis splitting, or combining of two axes, requires co- 
mmunication in exactly one dimenstion,  and that for multiple axis 
splittings the exchanges in the different dimensions can be ordered 
arbitrarily. We present two algorithms that vary incomplexity. 

14.  S'JBiEC* TERMS 

Boolean algorithms 
15. NUMBER OF PAGES 

 9   
16. PRICE CODE 

17     SECURITY CLASSIFICATION 
Oc REPORT 

unclassified 

18.   SECURITY CLASSIFICATION 
M.S PAGE 

19    SECURITY CLASSIFICATION 
OE^TRACT 

20. LIMITATION OF ABSTRACT 

SAR 

Stanaa'd Form 298 <:Rev   2-89) 
p'escDea be  iNs   sta   Z3S-S 



HIHI im 
PB93-238178 

The Complexity of Reshaping Arrays on Boolean Cubes 
Si. Johnsson, \kle University 
C.T. Ho, IBM Aimaden Research Center 

»TIC QUALITY.INSPECTED 3 

Thinking Machines Corporation BA90-2 
Technical Report Series  „    A   ,    ■ fc    

4/90 
Reproduced by: l 

National Technical Information Service 
U. S. Department of Commerce 
Springfield, VA 22161 fmc-H 



TMC-4 

The Complexity of Reshaping Arrays on Boolean Cubes 

S. Lennart Johnsson* 
Department of Computer Science 

Yale University 
New Haven, CT 06520 

Johnsson@cs.yale.edu, Johnsson@think.com 

Ching-Tien Ho* 
IBM Almaden Research Center 

650 Harry Road 
San Jose, CA 95120 

Ho@ibm.com 

Abstract 
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Reshaping of arrays is a convenient programming primi- 
tive. For arrays encoded in a binary-reflected Gray code 
reshaping implies code change. We show that an axis 
splitting, or combining of two axes, requires communica- 
tion in exactly one dimension, and that for multiple axes 
splittings the exchanges in the different dimensions can 
be ordered arbitrarily. The number of element transfers 
in sequence is independent of the number of dimensions 
requiring communication for large local data sets, and 
concurrent communication. The lower bound for the 
number of element transfers in sequence is y with K 
elements per processor. We present algorithms that is 
of this complexity for some cases, and of complexity K 
in the worst case. Conversion between binary code and 
binary-reflected Gray code is a special case of reshap- 
ing. 

1     Introduction 

In computer systems locality of reference has had a sig- 
nificant impact on performance ever since memory hi- 
erarchies were introduced. In modern computer sys- 
tems small memories in MOS technologies may be de- 
signed for higher speeds than larger memories. In multi- 
processor systems with processors and memory modules 
interconnected via a network, the access time for non- 
local information is typically considerably longer than 
local access. Moreover, the access time depends upon 
the network topology, congestion and bandwidth of the 
communications network. The reference pattern has a 
significant impact on the optimal data allocation in net- 
works that have a non-uniform distance between pairs 
of nodes, such as Boolean cube networks. 

In well structured computations the data is conve- 
niently represented by arrays. Many algorithms require 
local references in a Cartesian space corresponding to 

'The author is alio with Thinking Machines Corp., 245 First 
Street, Cambridge, MA 03142. This work was supported in part 
by AFOSR-89-0382 and ONR. Contract No. N00014-86-K-0310. 

'Part of the work was done while the author was with the 
Department of Computer Science, Yale Uni»ersity. 

the array. Explicit methods for the solution of partial 
differential equations are examples thereof. Preserving 
the locality in the Cartesian space when mapped to the 
processor network is important with respect to perfor- 
mance. The binary-reflected Gray code is often used to 
accomplish this task in Boolean cube networks. Succes- 
sive integers in the decimal encoding differ by one bit in 
their Gray code encoding. This property is used in CM- 
Fortran [1], Thinking Machines Corp. version of Fortran 
8X [11] for the Connection Machine. In this language 
implementation, array axes are by default encoded in a 
binary-reflected Gray code. 

Some important algorithms with a regular communi- 
cation pattern depend on local references in a Boolean 
space. For instance, the Fast Fourier Transform re- 
quires communication in the form of a butterfly net- 
work, which implies communication between adjacent 
nodes in a Boolean space with corresponding nodes in 
different ranks mapped to the sarnie processor. In many 
scientific and engineering applications algorithms that 
depend upon both types of access patterns may be used, 
and conversion between the two storage forms may be 
important. 

Many recursive algorithms make use of axis split- 
ting, or combining. An example is the data parallel 
implementation [2] of the divide-and-conquer algorithm 
by Dongarra and Sorensen [3] for computing eigenval- 
ues of symmetric tridiagonal systems. Array manipula- 
tion through operations such as RESHAPE in Fortran 
8X and APL, impacts the encoding for binary-reflected 
Gray coded axes. The encoding of binary coded axes is 
unaffected. 

Different axes may have different encoding. For in- 
stance, if butterfly computations are performed along 
one axis, and nearest-neighbor communications in 
a Cartesian space along the other axis of a two- 
dimensional array, then binary encoding of the first axis 
and binary-reflected Gray code encoding of the second 
axis is desirable. Furthermore, the encoding of a sin- 
gle axis may be mixed. Typically the number of array 
elements along an axis exceeds the number of proces- 
sors allocated to the axis, forcing several elements along 
an axis to be allocated to the memory of each proces- 
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•or with the array dementi being allocated a« evenly as 
potcible. Cyclic and consecutive [6] allocation are two 
common schemes for assigning multiple elements to pro- 
cessors. With local random access memories distance is 
not an issue in determining the encoding for the local 
memories. Binary encoding is typically used for the lo- 
cal part of an axis, and binary-reflected Gray code for 

the processor part. 
As an example consider a two-dimensional logic ar- 

my A of shape P xQ allocated to an Ni x N0 physical 
tmy of processors, where P = 2P, Q = 2*, JVj = 2"1, 
N0 = 2"', p > ni and q > n0. The data allocation is 
consecutive, and each array axis is encoded in a binary- 
reflected Gray code. Bit m in the address space is de- 
noted gm if encoded in a binary-reflected Gray code, and 
6m if encoded in binary code. Bit zero, or dimension 
eero, is the least significant, and the rightmost dimen- 
sion in our expressions. The symbol || denotes concate- 
nation of two fields. Axes are also labeled right to left. 
We illustrate the allocation as follows 

(gp-lgp-2    ■ -gp-n, gp-»i-lgp-u,-2 ■ ' • gQ 11 

p.ddr' in.ddr1 

g,-lg,-2 •••?,-«. gt-«,,-I gf-n,-a        3o>- 

puddr" in.ddr" 

The processor address for an element (i,j) of the 
logic array is formed as (paddr^OHpaddr (;')), and the 
local storage address is (maddr1(t)l|m'"ldr0(;)), where 

G,(i) = (gp-igp-2-go) « the binary-reflected Gray 
code encoding of i, and Gt{j) = (gj_,gj_j -go) is the 

binary-reflected Gray code encoding of j. Reshaping 
the logic arTay into a one-dimensional array such that 
(i,j) —> iQ + j preserving the assignment of bits in the 
logic array to bits in the physical address space implies 
a code conversion for axis zero if i is odd, and data mo- 
tion within n0 dimensional subcubes. The result is an 
allocation of the form 

(gp+1-igp+t-2 ■ ■ ■ gp+f-«, gp+t—M-igr+t-ni-? • • ■ 9f\\ 

«ddr< «ddr1 

g»-)g«-3 ' " •gf-n» gf-»»-I gf-"»-»■ go) 

p.ddr" m.ddr" 

where, as shown later, gm+, = ff„, m 6 {0, • • • ,p - 1} 
and on. = g°m, m 6 {0, ■•-,? - 2}. The value of 0,_, 
depends upon the value of gt. Figure 1 illustrates the 

data motion. 
Note that whereas the initial data allocation was con- 

secutive the data allocation after reshaping is not. If 
a consistent data allocation is desired, i.e., the same 
data allocation scheme before and after reshaping, then 
it is in general necessary to change the assignment of 
dimensions in the logic address space to dimensions in 
the physical address space.    A  dimension permutation 
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Figure 1: Reshaping an 1 x 16 array to a 4 x 4 array. 

[4,13,12,15,10,5] in the form of an n0 step right cyclic 
shift, or p - fij steps left cyclic shift on the dimensions 
in the field (maddr'Hpaddr0) is required, in combination 

with code conversion. 
With consecutive allocation of A and a binary encod- 

ing of local addresses, and a binary-reflected Gray code 
encoding of processor addresses, the processor address of 
element (i,;) is formed by computing the address from 
the binary-reflected Gray codes of [i/iViJ and [j/N0\. 
The local memory address is determined from the bi- 
nary codes oft mod JVj and j mod N0- The encoding of 
the address field is 

(gp-lgp-J-'-g^-n.^-n.-l^-n.-I-^oll 
« „ ■ " - ' 

p.ddr1 m.ddr1 

0 0 -0 1.0 L0 . . ffi \ 
g,-lg,-2 • • • g,-n«,y.,-lil

t-.,-3 b0j- 

p.ddi0 m»ddr° 

Reconfiguration of the processor array is equivalent to 
changing the assignment of dimensions in the logic ad- 
dress space to dimension« in the physical address space. 
A dimension permutation is required. If the encoding 
of the local address field is different from the proces- 
sor address field, then a code conversion is required in 
combination with the dimension permutation. Reconfig- 
uration of a processor array may be required to assure 



that all operand« use the same physical machine con- 
figuration, as for instance in matrix multiplication on 
the Connection Machine [8]. The Connection Machine 
Fortran compiler allocates logic arrays to the processors 
by denning a processor array congruent to the logic ar- 
ray for each array. Hence, in the matrix multiplication 
C «- A x B all three matrices may assume a different 
shape of the processor array. 

m this paper, we show how an axis splitting, or 
the combining of two axes into one, can be performed 
by a tingle exchange operation. For multiple axes 
split/merge operations, the number of element trans- 
fers in sequence is independent of the number of axes 
created or merged, if the communication system allows 
concurrent communication in all required dimensions. 
The number of element transfers in sequence is only a 
function of the size of the local data set, if there is a 
large local data set. The minimum number of element 
transfers in sequence is equal to the number of dimen- 
sions requiring communication. The conversion between 
binary-reflected Gray code and binary code is equiva- 
lent to reshaping between a one-dimensional array and 
a 2 x 2 x • • • x 2 array of dimension n. 

The algorithms we give for reshaping and code conver- 
sion are either asymptotically optimal, or optimal within 
a factor of two with respect to data transfer time. The 
control information can be computed locally from the 
node address. The code conversion can start in any di- 
mension, and the required exchanges can be carried out 
in dimensions ordered arbitrarily. This property allows 
reshaping by concurrent communication in all required 
dimensions, if the size of the local data set exceeds the 
number of dimensions requiring communication. Com- 
pared to the algorithms in [6,7] the new algorithms avoid 
the pipeline delay. Here we only treat the case with 
an entire axis encoded in either binary code, or binary- 
reflected Gray code. Furthermore, we assume a fixed 
assignment of dimensions in the logic address space to 
dimensions in the physical address space. Reshaping 
combined with dimension permutations is considered in 
[9]. 

The paper is organized as follows. Notation and def- 
initions are introduced next. Array reshaping is dis- 
cussed in Section 3. The conversion between binary- 
reflected Gray code and binary code is discussed in Sec- 
tion 4, followed by summary in Section 5. 

2    Preliminaries 

A Boolean n-cube has N = 2n nodes. Two nodes 
are adjacent if and only if their addresses differ 
in exactly one bit. The binary encoding of t is 
Bn(i) = (6n-i&n-2 ••&<>) «nd its binary-reflected Gray 
code encoding is (7„(t) = (pn-iffn-j • • ffo)- ZN = 
{0,1, • • •, N - 1} and (1;) is a string of j instances of 

Gn+l  = 

a bit with value one. "||" is the concatenation symbol 
For the complexity estimates we assume bi-directional 
channels and concurrent communication on all channels. 
The number of elements per node is K.  G„ is the se- 
2uence of n-bit binary-reflected Gray codes for ZN, i.e., 

L = (c.(o),c.(i), ...,cm(r-i)). 

Definition 1 [14] The binary-reflected Gray code is de- 
fined recursively as follows. 

(7, = ((7,(0),(7,(1)), where (7,(0) = 0,(7,(1) = 1. 

/ 0||(7„(0) \ 
0||(?»(1) 

0||(7„(2» - 2) 
0||(?„(2" - 1) 
l||<?»(2n - 1) 
l||(7B(2n - 2) 

1||G„(1) 
V HKMO) 

In the following we always refer to the binary-reflected 
Gray code defined above. 

Corollary 1 The highest order bit ii the same in the 
binary code and the binary-reflected Gray code. The 
remaining bits in the encoding of i € Zff/2 aTe <^f" 
fined by (7n_i((6„_j&n-j •• b0))- The remaining bits 
in   the   encoding   of i   6   ZN — ZN/2   <»r«   defined   by 

(7„-,((6»-26n-3-"M).  ThvLt> 

6B_,||Gn_,((6n_26n_J-oo)), 
ifbn^=0, 

&n-l||(7»-,((bn-2&n-3 " ■ • M), 
tfb„_, =1. 

(7„((6„-l6»-2- "M)=   ' 

Proof: From Definition 1. I 

Corollary 2 The integer encoded in the neighbor of 
node Gn(i) in cube dimension j is (?„(t © (V+1)), i.e., 
(?„(:) ©2>=(7n(t®(l'+1)). 

Proof: It follows from Corollary 1. I 

Definition 2 With binary-reflected Gray code encod- 
ing of an TV-element one-dimensional array A\i], i € ZN 

into an n-cube, address Gn[i) contains A[i\. 

Lemma 1 [14] 6m =»„_,© gn-i ffi • • • ffi Sm, me Zn. 
Conversely, gm = bm © bm+i. m € Zn with bn = 0. 
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Figure 2: Reshaping between two arrays with bi- 
nary-reflected Gray code encoded on a Boolean cube. 

Definition 3 Let A be an array of shape Ud-i x Ud-i x 
• ■ • x U0, U = (Ui.uUi.2, • • • - IM, C^m = 2'-, m € ZH, 
V = (V.P-i.Kr-j, ••■,%), Vra  = 2'-, m 6 Zg and 

n™=V^« = ni^K- The reshRPe function ^'^ 
transforms the shape of the array A from IT to V. 

Letti* =(Em=ow™)-1'0* =(Em=o"™)-1'^ = 
{üi I 0 < k < d- 1}, V = {it. I 0 < k < d' - 1} and V = 
(Ü U V) - (Ü n V). The sets W and V are the sets of most 
significant dimensions for the axes of the shapes U and 
V, with the most significant axes excluded. For instance, 
if U = (2s, 22,24, 23) and V = (2J, 22, 24, 2s), then W = 
{8,6, 2}, V = {10,8,4} and V = {10, 6, 4, 2}, Figure 2. 
To form the shape V from U communication is required 
in the set of dimensions defined by Ü - V for axes being 
combined into one, and the set of dimensions defined by 
V - W for axes being split. V is the set of dimensions 
for which communication is required for changing the 
shape U into V. Pp.ddi » 'he subset of dimensions in V 
assigned to processor dimensions in the physical address 
space. D,n.ddr = V - Pp.ddr i» the set of dimensions in 
V assigned to local memory dimensions in the physical 
address space. 

3    Reshaping Arrays 

Lemma 2 below states the fact that splitting an axis 
into two, or merging two axes into one, requires a code 
change in precisely one dimension. 

Lemma 2 Assume node GK(i) contains element A[i\, 
i € Zu, initially. If all nodes i = (6„_ib„_2 • • • M 
such that 6m = 1 exchange data in dimension 
m - 1 /or any m 6 {l,2,---,n - 1}, then 

node ^»-„.((MIMJ ■ ■ • ft»))||C?»((t~-ifc»-J • • • *«)) 
contain* element A[i] after the exchange. 

Proof: Assume that the reshape operation is U - 
(2B) -»  V = (2B-m,2"i), and that address <7„(t)  = 

(ff«-i(»)ff«-»(*)-- Bo(»)) initially contains element A[i\. 
Let « = Jfe2~ + /, I 6 Z,~, k 6 ZN/2-. Af- 
ter the reshape operation element », now (k,l), 
should reside in address (G._m(*)||<7m(0). where 

G„_m(fc) = Gn-„((bn-m-i(k)bn ,(*)••-M*))) = 
(fc-m-i(*)fc-«-»(*)-"»•(*)) 
and   Gm(i)     =     Gn((bn-i(l)bn-,(l)-b0(l)))     = 

(»»-i(0»»-»(0-"W(0)- 
;From the binary encoding bj(k) = bm+i(i), j € 

Z„_m, and bj{l) = i>(i). i € 2m. By Lemma 1, Bi{k) = 
6,(*)©6,+1(fc) = M,(i)«M,+i(«) = ft.+i(0. for ^ 
j € £B.ra, andff,(/) = by{t)Obs+l{t) = M»')©&;+,(») = 
gi(i) for all j € 2m_,. But, gm-i(t) = MiC) © 
fcm(0 = 6m_,(t) and ffm_,(«) = 6»-i(») ® M»'). ie-- 

ff~-i(0 = 
*»-i(«'),   ifM0 = °. 

am-i(i),   ifM0 = l- 

Hence, if bm{i) = 0 then G„(t) = Gn.m{k)\\Gm(() 
and no data motion is necessary for reshaping. But, 
if 6m(t) = 1 then an exchange is required in dimension 
m -1, and only in dimension m -1, since this dimension 
is the only dimension in which the code for i and (k,t) 

differs. I 

The change in the binary-reflected Gray code caused 
by an axis splitting, or the merging of two axes, is Lim- 
ited to the most significant dimension of the lower or- 
dered axis in the created pair of axes. The pairs of ad- 
dresses exchanging content in a given dimension depend 
upon the order of exchanges in the case of multiple axes 
splittings. The control of the exchange is derived from 
bm in the encoding of t. The index i assigned to an ad- 
dress changes if a more significant controlling dimension 
is one. For example, consider the reshaping of an array 
of 8 elements encoded in a binary-reflected Gray code 
to an array of 2 x 2 x 2 elements (which is equivalent to 
conversion to binary code). Figure 3 shows exchanged 
data in boldface, and two exchange orders: dimension 
one then zero, or zero then one. As is apparent from 
Figure 3, an exchange is carried out in dimension one 
between addresses 110 and 111 if the dimensions are 
treated in the order one first then zero, but not if the 
order is dimension zero first, then dimension one. 

The current value of bw that is assigned to a given 
address {gn-ign-i • ■ ■ go) i» easily determined from the 
address. 

Lemma 3 If the number of exchanges in dimensions 
more significant than m is eten, then the current value 
of logic dimension m assigned to an address Gn(i) = 
(gn-ign-7--gt) »* M otherwise it is bm. 

The lemma follows directly from Corollary 2. 
Half of the total number of elements need to be ex- 

changed for any split/merge operation. Hence, the num- 
ber of exchanges in which an element participates falls in 



Gray code Eich. Bxch. Exch. Exch. 
assignment dim. 1 dim. 0 dim. 0 dim. 1 
t paddr b, t bi t bi t «»3 t 

0 000 0 0 0 0 0 0 0 0 
1 001 0 1 0 1 0 1 0 1 
2 on 0 3 1 s 1 3 0 3 
3 010 0 3 1 2 1 2 0 2 
4 110 1 7 1 6 0 4 1 0 
5 111 1 6 1 7 0 5 1 7 
6 101 1 5 0 5 1 7 1 5 
7 100 1 4 0 4 1 6 1 4 

Figure 3: Reshaping an array of 8 elements into a 2 x 2 x 2 
array. 

the range 0 - \V\, depending upon its binary encoding 
n*~l v 

The total number of element exchanges is \V\ for 
changing shape U to shape V. We will now determine 
the number of element exchanges in sequence when the 

logic array is allocated to an n-cube, with "^ = K 
elements per processor. 

Theorem 1 A lower bound for the number of element 
transfers in sequence for array reshaping affecting the 
encoding of processor dimensions is K/2 with K ele- 
ments per processor. 

Proof: Pick a dimension d 6 2>p.ddr- There are N/2 
processors that need to transfer data across dimension d. 
There are K elements in each processor, and all elements 
need to be exchanged. The available bandwidth per 
dimension is N. I 

In the following, let 6 = |Z>p»ddr|- 

Theorem 2 Changing the shape U to shape V preserv- 
ing the assignment of logic dimensions to physical di- 
mensions requires at most Ä[*] element transfers in 
sequence with concurrent communication. 

Proof: Ltt Vphidl = {ds.i,d,-2r-,do}- Partition 
the local data set of size K into 6 sets of size at most 
ff ] each. Label the data sets from 0 to 6 - 1. Each 
such set is assigned a sequence of dimensions including 
all dimensions in 2?p,ddr once. Different sets are assigned 
different sequences such that no two sets have the same 
first, second, third, etc., dimension. For instance, let 
data in set m be assigned the sequence of dimensions 

<An.^(m+l)mod*>   " i ^(m-l)modJ- ■ 

The upper bound in Theorem 2 differs from the lower 
bound by a factor of two. The upper bound can be 
improved in some cases. We give upper bounds that are 
almost identical to the lower bounds for two cases. 

Theorem S Changing the shape U to shape V preserv- 
ing the assignment of logic dimensions to physical di- 
mensions requires at most *rfjl + 1 element transfers 
in sequence with concurrent communication, if no two 

elements o/I>p,ddr uff*T by one and K > 26. 

Proof: Consider the merging of a single pair of axes, or 
splitting of an axis. Assume the communication occurs 
in dimension m— 1. Consider a 2-cube formed by dimen- 
sions m and m - 1. Label the four nodes according to 
bmtm_i. By Lemma 2, communication is only required 
between nodes 10 and 11. There exist two edge-disjoint 
paths between these two nodes of lengths one and three, 
respectively. By assigning f |y] + 1 elements to the path 
of length one and the remaining elements to the path 
of length three, ([JJ] +1) element transfers in sequence 
are required. 

If no two elements in Z>p«ddx differ by one, then the 
2-cubes used for different data sets are disjoint. Thus, 
£([jj] + 1) element transfers in sequence are required. 
To reduce the communication complexity to 6\^] +1, 
we slightly overlap the communications on the succes- 
sive 2-cubes of a given data set. Without this overlap 
no data is sent along the length three path during the 
last two cycles of the routing of a data set. By send- 
ing two elements that have been routed with respect to 
the first 2-cube to the length-three path of the second 
2-c\ibe during the last two cycles of the routing phase of 
the first 2-cube (with one cycle each), the rcmmunica- 
tion delay due to the length-three path is only paid once. 
Sending elements along the length-three path during the 
last two cycles of the first 2-cube will not interfere with 
the communication of the data set exchanged in the sec- 
ond 2-cube. The reduced complexity is valid if f *] > 2, 
i.e., some data set has at least three elements. I 

In the routing used for the proof of the bound, the 
number of elements routed along the length-one path 
and the length-three path differ by two only for the first 
2-cube. For subsequent 2-cubes, the same number of 
elements are routed along each path, with the length- 
three path starting two cycles earlier. The first element 
on both paths arrives at the same time within the 2-cube 
except for the first 2-cube. If IS divides K and K > 26, 
then the complexity is y +1, which is only one element 
transfer above the lower bound. For K < 26, there is 
no advantage of using the length-three paths over the 
algorithm used in the proof of Theorem 2. 

If the reshape operation requires communication in 
dimensions m - 1 and m (by creating an axis of length 
2 encoded in dimension m), then dimension m cannot 
be used for rerouting to access unused communication 
links in dimension m - 1. Unused links in dimensions 
lower than m - 1 cannot be used either, since they do 
not connect to processors with unused links in dimension 
m - 1. However, the following observation can be used 
to reduce the number of element transfers in sequence. 



Lemma 4 For a reshape operation requiring communi- 
cation in dimension m-1 none of the linki in dimension 
m - 1 is used in m - 1 dimensional subcuhes obtained 
through complementing any of the address dimensions 
that are more significant than m — 1. 

Proof: We need to show that in any m-1 dimensional 
subcube defined by dimensions m and higher, om = 0 if 
the address defining the subcube is obtained by comple- 
menting a single dimension of significance m or higher. 
But, by Lemma 1 complementing a single dimension ffy, 
j g {m, m + 1, • • •, n - 1} complements bm. I 

By using a pipelined algorithm instead of the non- 
pipelined maximally concurrent algorithm used for the 
upper bound in Theorem 3, the properties in Lemma 4 
can be exploited to establish the following bound. 

Theorem 4 Changing the shape U to shape V requires 
at most [y] -I- 25 - 1 element transfers in sequence, if 
for each dimension requiring communication there exists 
one more significant dimension not requiring communi- 

cation and K > 25. 

Proof: The problem is equivalent to sending K ele- 
ments along a path of length 5 and each edge on the 
path is paired with a length-three path, disjoint with all 
other edges. If 8 is even two edge-disjoint paths of length 
28 can be denned by combining length-three and length- 
one paths for different dimensions. II8 is odd, then two 
paths of length 28 - 1 and 25 + 1 can be denned in a 
similar way. I 

Several routing schemes yield the same complexity as 
the scheme used in the proof. For instance, by creating 
one path of length 5 and one of length 35, and routing 
("?.] + S elements along the short route and [yj - 8 
elements along the long route the same routing time is 
achieved if K > 25. For K < 25, the latter approach 
degenerates to using a single path of length 8 and the 
required time is K + 8 - 1, which is lower than if two 
paths of the same length were used. However, if K < 25 
then the time for reshaping by pipelining along one path 
is higher than, or at best the same as if the concurrent 
exchange algorithm in the proof of Theorem 2 is used. 

Lemma 4 cannot be exploited directly for concurrent 
exchange sequences because an exchange in one dimen- 
sion affects the set of edges being used in a subcube. 
This property follows from Lemma 3. For instance, if 
a 1 x 16 array is reshaped into a 4 x 2 x 2 array, then 
if an exchange in dimension one is performed first the 
required exchanges in dimension zero are all on corre- 
sponding links in different subcubes instead of compli- 
mentary links. 

4     Conversion     between      Gray 
code and binary code 

Theorem 5 The conversion between a binary-reflected 
Gray code and binary code in either direction requires 
communication in n - 1 dimensions, and at most (n - 
1)|"_JL.] element transfers in sequence. 

Theorem 5 follows from Theorem 2 and the obser- 
vation that conversion from binary-reflected Gray code 
to binary code in an n-cube is equivalent to reshaping 
a one-dimensional array of size 2" to an n-dimensional 
array of shape 2 x 2 x • • • x 2. 

In any algorithm according to Lemma 2 and Theo- 
rem 5 only half of the communications links in each 
of the n - 1 dimensions are used in every step of the 
algorithm. Every path is of minimum length, and all 
minimum length paths are used evenly. The load on the 
communications network is minimal. 

Conjecture 1 For the conversion between binary- 
reflected Gray code and binary code encodings of K el- 
ements per processor m an n-cube, a lower bound is 

K^. 

For n = 2, the conjecture follows from Theorem 3. 
For n > 2 only the most significant dimension requires 
no communication. 

Corollary 3 The conversion between binary-reflected 
Gray code and binary code encoding in an n-cube can be 
performed as an arbitrary sequence of communications 

in dimensions: {0,1, • • ■, n - 2}. 

The corollary follows from the observation that the 
control is completely determined by the binary encoding 

of i. 
An algorithm proceeding from dimension n - 2 to di- 

mension 0 is depicted in Figure 4. Initially, processor 
G4(i) contains data of index i. After the conversion, i is 
assigned to processor Bt(i). The algorithm is described 
below. Several other algorithms are given in [7]. 

/* Converting Gray code to binary code 
starting from the most significant dimension */ 

for d := n - 2 downto 0 do 

if W+i = 1 tnen 

exch. content with the neighbor in dim. d 
endif 

enddo 

The control in the above algorithm is particularly sim- 
ple, since the following corollary follows from Lemma 3. 



Gray code Exchange Exchange Exchange 
dim. 3 dim. 1 dim. 0 

data paddr ht data h data »1 data 
00 0000 0 00 0 00 0 00 
01 0001 0 01 0 01 0 01 
03 0011 0 03 0 03 1 OS 

03 0010 0 03 0 03 1 03 

04 0110 0 04 07 1 00 

05 Olli 0 05 00 1 07 

oe 0101 0 06 OS 0 05 
0T 0100 0 07 04 0 04 
08 1100 It 13 0 13 
09 1101 14 IS 0 13 
10 1111 IS 14 1 IS 
11 1110 12 IS 1 14 
13 1010 11 0 11 1 10 
13 1011 10 0 10 1 11 
14 1001 00 0 09 0 09 
15 1000 OS 0 08 0 08 

Figure 4: Conversion of a binary-reflected Gray code to 
binary code 

Corollary 4 If the conversion from binary-reflected 
Gray code to binary code proceeds from the most signif- 
icant dimension to the least significant dimension, then 
the current value of bm assigned to on address is equal 
to g,n, where m is the controlling dimension. 

The algorithm is easy to generalize to an arbitrary 
starting dimension m, m 6 Zn-\ with exchanges in suc- 
cessive dimensions of decreasing order in a cyclic fash- 
ion. The first exchange requires the computation of bm. 
Figure 5 gives an example. Sequence 2 is the same as 
in Figure 4. The figure shows the location of i for each 
step of the algorithm for each sequence. For concurrent 
exchanges the local data set K is divided into n — 1 
sets, and set m, m 6 £n-i is subject to exchange in 
dimension (n — 2 — m — t) mod (n — 2) during step t, 

I* Converting Gray code to binary code starting from 
dimension m. Dimensions in decreasing order, cyclically*/ 
if ft,_i ©0„_2© ••• ©0m+i = 1 then 

exch. content with the neighbor in dim. m 
endif 
for d := m - 1 downto 0 do 

•f JM+i = 1 then 
exch. content with the neighbor in dim. d 

endif 
enddo 
for d := n - 2 downto m+ldo 

if gA+i = 1 then 
exch. content with the neighbor in dim. d 

endif 
enddo 

Orajr code Seq 2 Seq 1 Seq 0 
aMignment Bxchange dün. ■xchange cüxn. Bxchange dim 

Data paddr 2 1 0 I 0 2 0 2 1 
0 0000 0 0 0 0 0 0 0 0 
1 0001 1 1 1 1 1 1 1 1 
2 0011 2 2 2 s 3 S 3 3 
3 0010 3 3 3 a 2 3 2 2 
4 0110 4 7 T • C 4 4 • 
S 0111 S 6 • 7 7 S 5 7 
6 0101 6 S S s 5 7 7 S 
7 0100 7 4 4 4 4 e 6 4 
S 1100 16 12 S S 12 S 14 12 
9 1101 14 IS • • IS 9 IB 13 

10 1111 IS 14 10 11 IS 11 13 IS 
11 1110 13 IS 11 10> 14 10 13 14 
12 1010 11 11 IS 14 10 12 10 10 
13 1011 10 10 14 IS 11 13 11 11 
14 1001 9 9 IS 13 9 IS 9 9 
IS 1000 8 8 13 12 8 14 8 8 

Figure 5: Concurrent conversion of a binary-reflected 
Gray code to binary code. 

5     Summary 

We have shown that the splitting of a binary-reflected 
Gray code encoded axis into two binary-reflected Gray 
coded axes only requires an exchange in the most signif- 
icant dimension of the lower order axis. The exchanges 
required for multiple axis splittings can be performed in 
arbitrary order. 

Assume concurrent communication on all ports, K el- 
ements per processor, and 6 dimensions requiring com- 
munication for the reshape operation. If Jf is a multiple 
of 6, then the number of element transfers in sequence 
is independent of 6. An upper bound is K and a lower 
bound is *. We present three algorithms: (i) one of 
communication complexity Äf*], (ii) one of complex- 
ity 6\§j~\ + 1 for reshape operations for which no two 
dimensions requiring communication are adjacent and 
K > 26, and (iii) and one of complexity y -I- 26 - 1, if 
there is one unused processor dimension of higher order 
for every processor dimension requiring communication. 
The previously best known algorithm has a complexity 
of Ä"+ 5-1 [6]. 

The conversion between binary-reflected Gray code 
and binary code encodings is a special case of reshaping 
an array, and can be carried out on an n-cube by n - 
1 exchanges in dimensions 0, l,---,n — 2 in arbitrary 
order with a complexity of at most (n — l)[^jl element 
transfers in sequence. 
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